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Abstract

Several subgrid-scale (SGS) scalar flux (siA) and unmixedness (kAB) models are presented for large eddy simulation

(LES) of heat and mass transport in turbulent flows. The models are similar to those considered in [Int. J. Heat Mass

Transfer, in press] for SGS stresses and are based on the information residing at filtered or resolved field. All closures

are implemented ‘‘locally’’ and are assessed a priori and a posteriori via data generated by direct numerical simulations

of several nonreacting and reacting turbulent flows. A priori assessment indicates that the local values of siA and kAB

obtained by new ‘‘serial decomposition’’ closures are closer to ‘‘true’’ values than those obtained by dynamic-diffusivity

and two-parameter mixed models. A posteriori assessment also indicates that the statistics of the scalar field in non-

reacting and reacting flows are better predicted by LES when new SGS models are used.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The mathematical model representing heat and mass

transport in turbulent flows (reacting or nonreacting)

involves several nonlinear and coupled partial differential

equations for velocity, scalar and temperature fields. In

large eddy simulation (LES) of turbulent mixing and

reaction, a spatially filtered form of the velocity and

scalar (temperature and species concentration) transport

equations are solved together with some closures for re-

sidual or subgrid-scale (SGS) fluctuations. The closures

are due to subgrid correlations between velocity com-

ponents (SGS stresses), velocity and scalars (SGS scalar

fluxes) and scalars (SGS unmixedness) [2–4]. Jaberi and

Colucci [1] discuss the physical nature of the SGS stresses

and present several similarity-type closures for modeling

of these terms. Here, we extend the models to include the

scalar field and discuss the behavior of the SGS scalar in

various reacting and nonreacting turbulent flows.

Among various SGS LES models proposed for scalar

transport in turbulent flows, the probability density

function (PDF), the eddy-diffusivity, and the similarity

models have been the most popular ones [2,5–13]. In

‘‘assumed PDF’’ methods, a Pearson family of PDFs

have been used to model the SGS reactant conversion

rate in reacting flows [14]. In ‘‘direct PDF’’ methods, the

joint SGS scalar PDFs (termed the filtered density

function, FDF) is obtained via numerical solution of its

transport equation [13,15]. The latter can be used for

both reacting and nonreacting flows and appears to be a

very promising methodology for LES of turbulent com-

bustion. In similarity and mixed models, the SGS cor-

relations are evaluated based on the information residing

at large or resolved scales. This approach is well justified

in nonreacting flows but has some limitations in reacting

flows. Despite these limitations, the models constructed

based on the resolved field variables remain attractive as

they are relatively inexpensive and easy to implement.

The main objectives of this work are to understand

the subgrid transport of scalars in turbulent flows and

to develop/test closures which are solely based on the

resolved field variables. We specifically address the

modeling of the SGS scalar flux, siA and the SGS
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unmixedness, kAB for constant-density nonreacting and

isothermal reacting turbulent flows. For these flows, the

SGS stresses are not affected by the reaction and their

modeling are not discussed. Several diffusivity and sim-

ilarity closures are considered and are tested via detailed

a priori and a posteriori analysis of the data gathered

from DNS and LES of three-dimensional (3D) homo-

geneous isotropic turbulence, homogeneous shear tur-

bulence, and temporal-developing mixing layers.

2. Mathematical considerations and modeling

For a constant density Newtonian and Fickian fluid,

the normalized filtered transport equation of scalar A (A
is the normalized temperature or the mass fraction of a

(non)reactive species) in a turbulent flow is given by:

oA
ot

þ oðuiAÞ
oxi

¼ 1

Re0Pr
o2A
oxi oxi

� osiA
oxi

þ _xx; ð1Þ

where ui is the turbulent velocity in xi direction, t repre-

sents time, and the over-bar denotes the grid-level con-

volution filter [16]. All variables in the above equation

are normalized using reference length, velocity, density

and scalar scales. Consequently, the important nondi-

mensional parameters are the Reynolds, Re0 and the

Prandtl number, Pr (or the Schmidt number, Sc). The last

term on RHS of Eq. (1) represents the chemical source,

or sink term and is zero in nonreacting flows. For a bi-

nary isothermal reaction of the type AþB ! P, _xx is

_xx ¼ �DaAB ¼ �DaðABþ kABÞ; ð2Þ
where Da is the Damk€oohler number, and B is the mass

fraction of species B. The transport equation for species

B is similar to that of A and Sc ¼ Pr for both species.

In Eq. (1), the SGS scalar flux, siA ¼ uiA� uiA, and

the SGS unmixedness, kAB ¼ AB� AB require modeling

while ui (which not affected by an isothermal reaction) is

obtained from the numerical solution of the filtered

Navier-Stokes equations as discussed in Ref. [1]. In this

paper, we discuss the solution of Eq. (1) and the mod-

eling of SGS scalar flux and unmixedness. The SGS

unmixedness, kAB represents the unclosed part of the

filtered reaction rate in a reacting flow or simply the SGS

(co)variance in a nonreacting flow.

2.1. Subgrid-scale unmixedness

With ‘‘standard’’ models for SGS flux, dissipation

and triple-correlation of kAB, a closed (modeled) trans-

port equation for kAB is

okAB

ot
þ oðuikABÞ

oxi
¼ o

oxi
ðC

�
þ CtÞ

okAB

oxi

�
� C�kAB

þ 2Ct

oA
oxi

oB
oxi

� �

þ CtrpDa
oðAþ BÞ

oxi

� �

� oðABÞ
oxi

�
þ okAB

oxi

�
; ð3Þ

Nomenclature

A mass fraction of species A

B mass fraction of species B

CiA cross part of SGS scalar flux vector

CAB cross part of SGS unmixedness

Da Damkohler number

k magnitude of the Fourier wavenumber

LiA Leonard part of SGS scalar flux vector

LAB Leonard part of SGS unmixedness

p pressure

P product mass fraction

Pr Prandtl number

RiA Reynolds part of SGS scalar flux vector

RAB Reynolds part of SGS unmixedness

Re0 reference Reynolds number

Rek Taylor micro-scale Reynolds number

S magnitude of rate of strain tensor

Sc Schmidt Number

Sij mean rate of strain tensor

t time

TiA residual scalar flux at test-level

ui ith component of the fluid velocity vector

xi Cartesian coordinates (x1 ¼ x, x2 ¼ y,

x3 ¼ z).

Greek symbols

a ratio of grid-level to test-level filter sizes

dx grid spacing

D characteristic size of the grid-level filterbDD characteristic size of the test-level filter

�A dissipation rate of scalar A
C molecular diffusivity

Ct SGS diffusivity

kAB SGS unmixedness

KAB residual unmixedness at test-level

mt SGS viscosity

q correlation coefficient

sij SGS stress tensor

siA SGS scalar flux vector

Superscripts

� grid-level filtering operatorb�� test-level filtering operator
0 SGS fluctuations
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where C ¼ 1=Re0Pr, and Ct are the molecular and the

SGS turbulence diffusivity coefficients, respectively. Eq.

(13) reduces to a simple gradient model for kAB by as-

suming that the production and dissipation of kAB are in

balance and Ct / mt, C� / mt=D
2

(mt is turbulent viscosity

and D is the characteristic length scale of the filter

function)

kAB ¼ CU1D
2 oA

oxi

oB
oxi

� �
: ð4Þ

The model labeled UNM1 here. The model coefficient,

CU1 may be kept constant or may be calculated via dy-

namic procedure [17]. In the dynamic procedure, a test-

scale filtering operator (represented by ‘‘hat’’ and a

characteristic filter size of bDD) is applied to Eq. (1),

yielding an equation for bAA with test-scale scalar flux,

TiA ¼ duiAuiA � buui
bAA; and test-scale unmixedness, KAB ¼cABAB � bAAbBB as unknowns. The grid- and the test-level SGS

unmixedness are related by the following (Germano)

identity

H ¼ dABAB � bAAbBB ¼ KAB �dkABkAB ; ð5Þ

where H is the resolved SGS unmixedness. Finally, with

a gradient closure for KAB (i.e. KAB ¼ CU1
bDD2 o

bAA
oxi

o
bBB
oxi

) Eq.

(5) yields

CU1 ¼
dABAB � bAAbBB

bDD2 o
bAA
oxi

o
bBB
oxi

� �
� D

2 doA
oxi

oB
oxi

oA
oxi

oB
oxi

� � : ð6Þ

This is a ‘‘dynamic’’ expression for model coefficient

which is derived based on the assumption that the co-

efficient does not vary significantly within the test filter

domain.

For a filter that convolves in space, there is some

information in the SGS unmixedness that can be ex-

plicitly calculated. To extract this information, kAB is

decomposed as,

kAB ¼ LAB þ CAB þ RAB; ð7Þ

LAB ¼ AB� AB;

CAB ¼ ðAB0 � AB0Þ þ ðA0B� A0 BÞ;

RAB ¼ A0B0 � A0 B0;

where for any variable f , f 0 ¼ f � f . The terms LAB, CAB

and RAB has the same properties as kAB and are referred

to as the (generalized) Leonard, the (generalized) cross

and the (generalized) Reynolds terms, respectively. The

Leonard term is closed and needs no modeling.

Similarly, KAB is decomposed as:

KAB ¼ LT
AB þ CT

AB þ RT
AB; ð8Þ

where

LT
AB ¼ d

ABAB � b
AA
b
BB;

CT
AB ¼ ðdAB0AB0 � b

AA bB0B0 Þ þ ðdA0BA0B � bA0A0 bBBÞ;
RT
AB ¼ dA0B0A0B0 � bA0A0 bB0B0 :

ð9Þ

Following a procedure similar to that used by Salvetti

and Banerjee [8], a two-parameter mixed model is con-

structed for kAB,

kAB ¼ CU2aLAB þ CU2bD
2 oA

oxi

oB
oxi

� �
: ð10Þ

Here, we assume that CAB is proportional to LAB and RAB

and is modeled with a diffusivity closure similar to that

in Eq. (4). The traditional dynamic approach (outlined

above) cannot be used to calculate the model coefficients

because there are two unknowns (CU2a and CU2b) and

only one equation (Eq. (5)). Here, we assume ‘‘scale

similarity’’ between CAB and CT
AB and between RAB and

RT
AB to calculate the model coefficients as

CU2a ¼
ðdAB0AB0 � b

AA bB0B0 Þ þ ðdA0 BA0 BÞ � bA0A0 bBBÞd
A BA B � b

AA
b
BB

;

CU2b ¼
dA0 B0A0 B0 � bA0A0 bB0B0

bDD2 o
bAA
oxi

o
bBB
oxi

� �
� D

2 doA
oxi

oB
oxi

oA
oxi

oB
oxi

� � :

ð11Þ

Eqs. (10) and (11) represent a dynamic mixed closure,

termed UNM2. The assumption that CAB and RAB are

proportional to LAB yields a similarity model for kAB,

kAB ¼ CU3LAB ¼ CU3ðAB� ABÞ; CU3 ¼
dABAB � bAAbBBd
ABAB � b

AA
b
BB
;

ð12Þ

which is similar to those proposed in Refs. [18,19] and is

labeled as UNM3 here.

For a filter allowing overlap between residual and

filtered fields, part of CAB and RAB may be calculated by

decomposing them into the Leonard, the cross and the

Reynolds terms of their own,

CAB ¼ ðAB0 � AB0Þ þ ðA0 B� A0 BÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIÞ

þ ðAðB0Þ0 � A ðB0Þ0Þ þ ððA0Þ0B� ðA0Þ0 BÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIIÞ

þ 2ðA0 B0 � A0 B0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðIIIÞ

þ ðA0ðB0Þ0 � A0 ðB0Þ0Þ þ ððA0Þ0B0 � ðA0Þ0 B0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIVÞ

; ð13Þ
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RAB ¼ ðA0 B0 � A0 B0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðVÞ

þ ðA0ðB0Þ0 � A0 ðB0Þ0Þ þ ððA0Þ0B0 � ðA0Þ0 B0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðVIÞ

þ ððA0Þ0ðB0Þ0 � ðA0Þ0 ðB0Þ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðVIIÞ

; ð14Þ

where, ðA0Þ0 ¼ A0 � A0 ¼ A� 2Aþ A and ðB0Þ0 ¼ B0 �
B0 ¼ B� 2Bþ B. Terms (I), (III), and (V) are closed but

the remaining terms are not. An interesting observation

is that the Leonard and the cross parts of RAB (i.e. terms

(V) and (VI)) are the same as terms (III) and (IV). This

suggests that CAB and RAB are at least moderately cor-

related.

Substituting Eqs. (13) and (14) into Eq. (7) yields

kAB ¼ /AB þ wAB; ð15Þ

where,

/AB ¼ ðAB� ABÞ þ ðAB0 � AB0 þ A0 B� A0 BÞ

þ 3ðA0 B0 � A0 B0Þ;

and

wAB ¼ ðxAyB � xAyBÞ þ ðyAxB � yAxBÞ;

xA ¼ 1
2
ðAþ 2A� AÞ; xB ¼ 1

2
ðBþ 2B� BÞ;

yA ¼ A� 2Aþ A; yB ¼ B� 2Bþ B;

are the ‘‘known’’ and ‘‘unknown’’ parts of the SGS

unmixedness, respectively.

By neglecting the cross and the Reynolds parts of

wAB,

wAB ¼ xAyB � xAyB þ yAxB � yAxB: ð16Þ

Eqs. (15) and (16) represent a new serial decomposition

closure for kAB, termed UNM4. By assuming that the

cross and the Reynolds parts of wAB are proportional to

its Leonard part,

wAB ¼ CU5ðxAyB � xAyB þ yAxB � yAxBÞ; ð17Þ

and we obtain another serial decomposition model for k
(termed UNM5) here. The model coefficient, CU5 is dy-

namically calculated as:

CU5 ¼
ðdxAyBxAyB �cxAxAcyByBÞ þ ðdyAxByAxB �cyAyAcxBxBÞ
ðdxAyBxAyB �cxAxAcyByBÞ þ ðdyAxByAxB �cyAyAcxBxBÞ : ð18Þ

The moderate correlation between CAB and the Leonard

part of RAB (RAB), as indicated in Eqs. (13) and (14), also

suggests the following closure (termed UNM6) for the

SGS unmixedness:

kAB ¼ ðAB� ABÞ þ CU6ðA0 B0 � A0 B0Þ;

CU6 ¼
ðdABAB � bAAbBBÞ � ðdABAB � b

AA
b
BBÞ

ð dA0 B0A0 B0 � b
A0A0 bB0B0 Þ

:
ð19Þ

A modified version of this model may be used for a

sharp cut off filter function in Fourier space. For this

filter, A0 and B0 in Eq. (19) are replaced by A00 ¼ A� bAA
and B00 ¼ B� bBB. Results of our a priori analysis, as

obtained by the box filter, indicates that the original and

modified versions of UNM6 have the same accuracy.

2.2. Subgrid-scale scalar flux

In this section, we present several SGS scalar flux

closures which are similar to SGS unmixedness models

in Section 2.1 (all models are listed in Table 1). The most

popular closure for siA is the eddy diffusivity closure [5]

siA ¼ �CS1D
2jSj oA

oxi
; ð20Þ

where CS1 is the model coefficient, and jSj ¼ ð2SijSijÞ1=2
,

Sij ¼ 1
2
ðoui
oxj

þ ouj
oxi
Þ, is the norm of the strain rate tensor. In

the dynamic version of this model (termed SFM1 here),

CS1 is calculated locally and dynamically by using a

similar diffusivity closure for the test-level scalar flux

(TiA) [6,7].

For development of similarity and mixed closures, siA
is decomposed as:

siA ¼ LiA þ CiA þ RiA; ð21Þ

Table 1

A list of SGS scalar flux and unmixedness closures

Model # Model type SGS scalar flux model SGS unmixedness model

1 Diffusivity SFM1, Eq. (20) UNM1, Eq. (4)

2 Mixed SFM2, Eq. (22) UNM2, Eq. (10)

3 Similarity SFM3, Eq. (23) UNM3, Eq. (12)

4 Serial decomposition 1 SFM4, Eqs. (26) and (27) UNM4, Eqs. (15) and (16)

5 Serial decomposition 2 SFM5, Eqs. (26) and (28) UNM5, Eqs. (15) and (17)

6 Serial decomposition 3 SFM6, Eq. (29) UNM6, Eq. (19)
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where,

LiA ¼ uiA� uiA;

CiA ¼ ðuiA0 � uiA0Þ þ ðu0iA� u0iAÞ;
RiA ¼ u0iA0 � u0iA0;

are the Leonard, the cross and the Reynolds parts of siA,

respectively. TiA is similarly decomposed to its Leonard

(LT
iA), cross (CT

iA) and Reynolds (RT
iA) parts.

In the dynamic two-parameter mixed model of [8]

(referred to as SFM2 here), CiA is assumed to be pro-

portional to LiA, and RiA is modeled by a diffusivity

closure. With these approximations,

siA ¼ �CS2aD
2jSj oA

oxi
þ CS2bLiA; ð22Þ

where the model coefficients CS2a and CS2b are calculated

dynamically.

Alternatively, we may assume CiA and RiA are pro-

portional to LiA, and develop the following similarity

model for siA:

siA ¼ CS3LiA ¼ CS3ðuiA� uiAÞ; ð23Þ

CS3 ¼
GiAHiA

HiAHiA
;

GiA ¼ duiAuiA � buiui bAA ¼ TiA � csiAsiA ;

HiA ¼ d
uiAuiA � buiui bAA:

This model is referred to as SFM3.

The idea of serial decomposition, as outlined in

Section 2.1, is the basis of several new models for siA.

First, the Leonard and the cross parts of siA are de-

composed as:

CiA ¼ ðuiA0 � uiA0Þ þ ðu0iA� u0iAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIÞ

þ ðuiðA0Þ0 � uiðA0Þ0Þ þ ððu0Þ0iA� ðu0Þ0 iAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIIÞ

þ 2ðu0iA0 � u0 iA0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðIIIÞ

þ ðu0iðA0Þ0 � u0iðA0Þ0Þ þ ððu0Þ0iA0 � ðu0Þ0 iA0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIVÞ

; ð24Þ

RiA ¼ ðu0iA0 � u0iA0Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðVÞ

þ ðu0iðA0Þ0 � u0iðA0Þ0Þ þ ððu0Þ0iA0 � ðu0Þ0 iA0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðVIÞ

þ ððu0Þ0iðA0Þ0 � ðu0Þ0iðA0Þ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðVIIÞ

; ð25Þ

with, ðu0iÞ
0 ¼ u0i � u0i ¼ ui � 2ui þ ui. Then, Eqs. (21), (24)

and (25) are written as

siA ¼ /iA þ wiA; ð26Þ

where,

/iA ¼ ðuiA� uiAÞ þ ðuiA0 � uiA0 þ u0iA� u0 iAÞ

þ 3ðu0iA0 � u0 iA0Þ

and

wiA ¼ ðwiyA � wiyAÞ þ ðvixA � vixAÞ;
wi ¼ 1

2
ðui þ 2ui � uiÞ; vi ¼ ui � 2ui þ ui

are the known and unknown parts of siA, respectively.

Two new serial decomposition models are proposed

for siA. In the first one (termed SFM4),

wiA ¼ wiyA � wiyA þ vixA � vixA; ð27Þ

and in the second one (termed SFM5)

wiA ¼ CS5ðwiyA � wiyA þ vixA � vixAÞ; ð28Þ

where CS5 is calculated locally using the dynamic pro-

cedure.

According to Eqs. (24) and (25), the Leonard part of

RiA and CiA are partially correlated. This suggests the

following dynamic model (called SFM6) for siA;

siA ¼ ðuiA� uiAÞ þ CS6ðV ia� V iaÞ;

CS6 ¼
EiADiA

DiADiA
; ð29Þ

where,

EiA ¼ ðduiAuiA � buiui bAAÞ � ðduiAuiA � buiui bAAÞ; DiA ¼ ðdV iaV ia � c
V iV i

baaÞ:
For a sharp cut off filter in Fourier space, a modified

version of SFM6 is used. We also tested variety of dif-

ferent dynamic one-, two-, and three-parameter mixed

models. Our a priori analysis indicates that none of the

tested models are superior to SFM6.

3. Simulations

Direct and LESs of (1) homogeneous isotropic (HI),

(2) homogeneous shear (HS), and (3) temporally devel-

oping shear layer (TSL) of both nonreacting and react-

ing turbulent flows are conducted. The shear layers are

simulated with no initial 3D perturbations in TSL1 and

with added initial random solenoidal 3D velocity fluc-

tuations in TSL2. The numerical procedure in both

DNS and LES is similar to that used in our previous

works [20–24]. The spatial discretization is via a spec-

tral-collocation numerical scheme utilizing Fourier basis

functions and time advancement is via second order
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Adams–Bashforth method. The boundary conditions

and initial velocity field are similar to those in Ref. [1].

Some of the specifications of four DNS cases that are

considered in this study are listed in Table 2 of Ref. [1].

In HI and HS flows, the initial scalar fields are specified

in the physical domain as square waves (slabs) with

scalar B perfectly anti-correlated with A [20]. The sca-

lars have no mean gradient; hence their rms fluctuations

decay in time [20]. In TSL flows, the scalars, A and B,

are introduced into the high- and low-speed streams,

respectively. The molecular Schmidt number is 0.7 in all

simulations.

Both the ‘‘exact’’ and the ‘‘approximate’’ versions of

box filter in physical space are used in LES. This filter

function does not violate the realizability condition for

scalar field and yields results qualitatively similar to

those obtained with a Gaussian filter. The exact version

is used for calculating the true SGS quantities by aver-

aging over fine (DNS) grid points. The filter size at grid-

level (D) is set to be twice of the grid spacing in LES

(ðdxÞLES) and the filter size at test-level (bDD) is twice of

that at grid-level (i.e. a ¼ 2).

The resolution in DNS is dictated by the magnitudes

of the physical parameters, with sufficient testing on the

independency of the results to the grid resolution. Sim-

ulations of HI and HS flows are conducted within a

cubic box containing 1283 collocation points. The reso-

lution for DNS of TSL flows is 963. The resolution in

LES is specified by the ratio of the filter size at grid-level

to the grid spacing in DNS (R ¼ D=ðdxÞDNS). For ex-

ample, with 1283 collocation points in DNS and R ¼ 8,

the resolution in LES would be 323. Four different ap-

proximate box filters are considered (Table 2). In the

first one (FILT#1), the filtered values are evaluated

by trapezoidal rule [25,26] and R ¼ 8. The second

(FILT#2) and the third (FILT#3) filter functions are

similar to FILT#1 but with R ¼ 12 and 16, respectively.

In the fourth filter function (FILT#4), the size of filter is

the same as that in FILT#1 but the filtered variables are

calculated by averaging with equal weight for all grid

values. In all simulations (both DNS and LES), the grid

spacing in all directions are uniform and equal.

The comparison between DNS and LES is made a

priori and a posteriori. In a priori analysis, the subgrid

quantities as calculated directly from DNS data are

compared. In a posteriori analysis, the statistics of the

resolved variables as predicted by LES are compared

with those obtained from the DNS data. The models are

tested in a localized manner without any averaging over

homogeneous directions. For HI and HS flows, the

temporal evolution of the volumetric averaged statistics

are of primary importance and are presented. For TSL

flows the averaging are conducted over x–y planes

(represented by ½ �) and the y-dependent statistics are

considered. In some cases the volumetric averaged sta-

tistics for TSL flows are also reported. Of primary sta-

tistical quantities that are considered below are the

correlation coefficient between variables a1 and a2, de-

noted by fða1; a2Þ and the PDFs of subgrid and resolved

variables.

4. Results of a priori analysis

The results of our a priori analysis are presented in

two different sections in which the modeling of the SGS

scalar flux and the SGS unmixedness are discussed

separately.

4.1. Subgrid-scale scalar flux

The decomposition of SGS scalar flux into the

Leonard, the cross and the Reynolds terms, as argued in

Section 2.2 will result in less modeling and improved

evaluation of siA since LiA may be explicitly calculated

and CiA and RiA may be separately modeled.

Several different diffusivity and similarity base clo-

sures for the Leonard, the cross and the Reynolds parts

of siA, are evaluated in Table 3, where the time-averaged

values of the correlation coefficients between C1A=R1A

and LiA=D
2jSj oA

oxi
=RiARiA are listed. The results in this

table indicate that the local values of C1A and R1A are

poorly predicted by the gradient models. In contrast, the

similarity closures are reasonably accurate. Our results

(not shown) also indicate that the contributions of L1A

and C1A are comparable to R1A and fairly independent of

the (rate of) reaction in all flows and at all times. All of

these suggest that the similarly type models are poten-

tially the most accurate.

The SGS scalar flux models discussed in Section 2.2

and listed in Table 1 (i.e. SFM1 to SFM6), are assessed

Table 2

The filter functions

Filter D=ðdxÞDNS Filter approximation

FILT#1 8 Trapezoidal

FILT#2 12 Trapezoidal

FILT#3 16 Trapezoidal

FILT#4 8 Equal-weighting

Table 3

The time averaged correlation coefficients in different flows

Correlation coefficient HI HS

fðCiA; LiAÞ 0.702 0.689

fðCiA;�D
2jSj oA

oxi
Þ 0.332 0.250

fðCiA;RiAÞ 0.848 0.837

fðRiA;LiAÞ 0.361 0.349

fðRiA;�D
2jSj oA

oxi
Þ 0.304 0.249

fðRiA;RiAÞ 0.635 0.615
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in Figs. 1 and 2, where the correlation coefficients and

the PDFs of siA for HI, HS and TSL1 flows are shown.

The ‘‘time’’ t in Fig. 1 is the time normalized by the final

time of simulation in each case. This time is adopted to

make comparison between various flows more conve-

nient. Fig. 1 shows that the local values of siA, as cal-

culated by SFM1, correlate rather poorly with those of

DNS in all flows.

The results in Fig. 1 are consistent with those in

Table 3 and indicate that the performance of the gra-

dient model is not improved by dynamic evaluation of

its coefficient. The accuracy of SFM2 is better than

SFM1 but still much less than those of the proposed

similarity closures (SFM3 to SFM6). Among the simi-

larity closures, SFM5 and SFM6 are the most accurate

and the accuracy of SFM3 is between that of SFM2 and

SFM5. The PDFs of s1A as obtained by the serial de-

composition models (SFM5 and SFM6) are also shown

in Fig. 2 to be very close to the ‘‘true’’ PDFs; again

indicating the accuracy of the serial decomposition clo-

sures. The predicted PDF by SFM2 is very different than

the true PDF.

To assess the sensitivity of the models to the filter

parameters and to the reaction rate, the time averaged

values of the correlation coefficients between DNS and

modeled SGS scalar fluxes for different filters and

Damk€oohler numbers are considered in Table 4. The

tested models exhibit no significant dependency to the

rate of reaction. However, the magnitude of the corre-

lation coefficients decrease as the size of the filter in-

creases or the error in the filtering operation increases

(i.e. FILT#4 is used). The effects of filtering approxi-

mation and filter size on SFM5 and SFM6 are much less

than those on SFM2. The results for HI and TSL flows

exhibit similar trends to those for HS flow in Table 4.

Fig. 1. Temporal variations of the correlation coefficient be-

tween the DNS and modeled values of the SGS scalar fluxes in

nonreacting flows: (a) HI, (b) HS, and (c) TSL1.

Table 4

The time averaged correlation coefficient between DNS and

modeled values of siA for HS flow

Filter type Da SFM2 SFM5 SFM6

FILT#1 4 0.521 0.895 0.896

FILT#3 4 0.287 0.757 0.760

FILT#4 4 0.386 0.872 0.875

FILT#1 1 0.520 0.890 0.889

Fig. 2. The PDFs of the SGS scalar flux (s1A) in HI flow and for

Da ¼ 4 at t ¼ 0:063.
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4.2. Subgrid-scale unmixedness

The importance of SGS unmixedness in various re-

acting flows is demonstrated in Fig. 3(a), where the

temporal variation of hkAB=ABi for HI and HS flows is

considered. The results for HI and HS flows are similar

and show that the SGS unmixedness becomes more

important as the rate of reaction increases. It is also

shown in Fig. 3(a) that the average contribution of kAB

decreases in time as mixing/reaction proceeds, leading to

a relatively low average values for jkAB=ABj at long

times. However, Fig. 3(b) shows that the PDF of kAB=AB
becomes highly skewed (toward )1) as flow evolves,

suggesting that even at long times the filtered reaction

rate is significantly affected by the SGS scalar correla-

tions at some locations. The SGS unmixedness is always

negative and decreases the rate of reaction as expected.

This is not to say that SGS fluctuations prevent reaction

from occurring; but that the reaction does not proceed at

the rate based on the filtered value of the concentrations.

Several of the closures developed in Section 2.1 for

kAB are derived based on the argument that the Leonard,

the cross and the Reynolds parts of kAB (i.e. LAB, CAB and

RAB) behave differently but they are all important and

should be considered in the modeling of kAB. This ar-

gument is supported by the results presented in Fig. 3(c)

for HI flow (the trends are similar in HS and TSL flows).

The results in this figure show that the PDFs of LAB, CAB

and RAB are indeed very different. While LAB and RAB are

mostly negative, CAB attains both positive and negative

values. Also, the PDF of RAB is significantly shifted to-

ward the high negative values as compared to the PDFs

of LAB and CAB. This is expected since the nonlocal in-

teractions between the subgrid and the resolved scales

mainly appear in the Reynolds part of the SGS unmix-

edness. Also shown in Fig. 3(c) is the PDF of L
AB as

calculated from DNS data over coarse (LES) grids. LAB

is obtained via averaging over fine (DNS) grids. In LES,

only the information over coarse grids is available; hence

it is important to know how L
AB approximates LAB. Fig.

3(c) shows that the PDFs of L
AB and LAB are very close,

confirming that the Leonard term is accurately calcu-

lated over LES grids. Our results (not shown) also in-

dicate that the contributions of LAB and CAB, RAB are

comparable and important in all flows regardless of the

rate of reaction.

Various base closures for CAB and RAB are tested in

Table 5, where the time-averaged correlation coefficients

of CAB and RAB with LAB, D
2 oA
oxi

oB
oxi

and RAB are compared.

Evidently, all the tested closures are able to predict the

local values of CAB with moderate accuracy. However,

the predictions are not as good for RAB. Among different

closures, RAB exhibits the highest correlation with the

local values of CAB and RAB.

The results in Table 5 suggest some moderate accu-

racy for the gradient KAB model. However, the results of

our a priori analysis (not shown) indicate that the pre-

dictions of the dynamic gradient model (UNM1) are

indeed very inaccurate. For example, we have found that

Fig. 3. (a) Temporal variations of the volumetric-averaged

normalized SGS unmixedness in HI and HS flows, (b) PDFs of

the normalized SGS unmixedness in HI flow for Da ¼ 4, (c) the

PDFs of the Leonard, the cross and the Reynolds parts of the

SGS unmixedness in HI flow for Da ¼ 0:6 at t ¼ 0:0625.

Table 5

The time averaged correlation coefficients in HS flow

Correlation coefficient Da ¼ 0:6 Da ¼ 4

fðCAB;LABÞ 0.731 0.726

fðCAB;D
2 oA
oxi

oB
oxi
Þ 0.770 0.762

fðCAB;RABÞ 0.826 0.825

fðRAB; LABÞ 0.492 0.461

fðRAB;D
2 oA
oxi

oB
oxi
Þ 0.474 0.447

fðRAB;RABÞ 0.668 0.603
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the correlation coefficients between DNS and UNM1

values of kAB are always less than 0.05 in all flows and at

all Damk€oohler numbers. To explain this behavior, in

Table 6 the time averaged values of the correlation co-

efficients between CS
g ¼ LT

AB=TAB and CS
t ¼ dLABLAB=dkABkAB and

those between CG
g ¼ bDD2 o

bAA
oxi

o
bBB
oxi
=TAB and CG

t ¼ D
2 doA
oxi

oB
oxi

oA
oxi

oB
oxi
=dkABkAB

are considered. CS
g , CS

t , CG
g , CG

t represent the similarity

and the gradient model coefficients at grid- and test-

levels. In the derivation of UNM1 and UNM2 it is as-

sumed that there is a strong correlation between the

grid- and the test-level coefficients. The results in Table 6

indicate that there is basically no correlation between

these coefficients. This explains the poor performance of

UNM1 and UNM2. In contrast, the grid- and test-level

coefficients of the similarity models (CG
g , CG

t ) are well

correlated which explains the better performance of the

dynamic similarity closures.

Temporal evolution of the correlation coefficients

between the modeled and the true (DNS) values of kAB in

HI, HS and TSL flows are shown in Fig. 4. The results in

this figure demonstrate the ability of UNM3, UNM4,

UNM5 and UNM6 to accurately predict the local values

of kAB. Despite some variations in time, the correlations

coefficients as obtained with these models remain fairly

high throughout the simulations in all flows. Evidently,

UNM4, UNM5 and UNM6 are more accurate than

UNM3. The proposed serial-decomposition closures are

able to predict the local values of the test-level SGS

unmixedness, KAB, even better than the grid-level un-

mixedness, kAB. The nonlocal interactions between the

subgrid and the resolved field quantities are less im-

portant at test-level; therefore, the test-level unmixed-

ness is better predicted. Our results (not shown) also

indicate that the PDF of kAB is also reasonably well

predicted by the serial decomposition models in all flows

and at all times.

5. Results of a posteriori analysis

In this section, the subgrid models are assessed a

posteriori by conducting LES of various nonreacting

and reacting turbulent flows. In nonreacting simula-

tions, the SGS scalar flux models, SFM2, SFM5, and

SFM6 are tested. In reacting simulations, the SGS un-

mixedness models, UNM2, UNM5, and UNM6 are

tested. The LES results obtained with other closures

indicate that SFM1 is less accurate than SFM2, and

SFM3 and SFM4 are less accurate than SFM5. Simi-

larly, we have found that LES results with UNM1 and

UNM2 are much less accurate than those with UNM3

and UNM4. The last two models generate less accurate

results in comparison to those obtained with UNM5. In

all reacting simulations, SFM4 is used as SGS scalar flux

model. In all simulations (reacting and nonreacting) a

Table 6

The time averaged correlation coefficients

Correlation coefficients HI HS TSL2a

fðCG
t ;C

G
g Þ 0.033 0.017 0.000

fðCS
t ;C

S
g Þ 0.923 0.922 0.971

a In HI and HS flows Da ¼ 4 and in TSL flow Da ¼ 1.

Fig. 4. Temporal variations of the correlation coefficient be-

tween the DNS and modeled values of the SGS unmixedness in

different flows: (a) HI and Da ¼ 4, (b) HS and Da ¼ 4, and (c)

TSL2 and Da ¼ 1.
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SGS stress model similar to SFM6 is employed [1]. In

a priori analysis (Section 4), the SGS unmixedness

models are directly evaluated without referring to the

SGS scalar flux models. In a posteriori analysis, the

scalar flux models have to be tested first.

5.1. Nonreacting flows

Temporal variation of the resolved scalar variance as

obtained by LES with different SGS scalar flux models

and by LES with no model are compared with that of

DNS in Fig. 5. Evidently, the SGS velocity-scalar cor-

relations are important in both HI and HS flows as LES

with no SGS scalar flux model significantly overpredicts

the filtered scalar variance. These correlations are cor-

rectly represented by SFM5 and SFM6 (see Figs. 1 and

2) and with these models LES predications are close to

DNS in both HI and HS flows. Several other statistics of

the filtered scalar field as obtained by LES and DNS are

plotted in Figs. 6 and 7.

Fig. 6(a) shows the temporal variation of the volu-

metric-averaged values of the resolved scalar dissipa-

tions rate, �A ¼ c oA
oxi

oB
oxi

in HS flow. Without any SGS

scalar flux model, LES overpredicts h�Ai due to accu-

mulation of the filtered scalar spectra at high wave-

numbers. LES with SFM2 also overpredicts h�Ai. In fact

the long time values of h�Ai predicted by SFM2 exceed

those of LES with no SGS scalar flux model. This

explains the slower decay rate of the scalar variance in

Fig. 5 for LES with SFM2. The results obtained via

SFM5 and SFM6 are close to DNS results at all times as

expected.

Fig. 6(b) shows the temporal variation of the maxi-

mum values of the filtered scalar within the computa-

tional domain (Amax) in DNS and LES. In DNS, Amax

never exceeds unity and properly decays with the decay

of the scalar variance. However, in LES, the scalar

concentration at some region of the flow may exceeds its

maximum allowable (unity) value if a proper subgrid

model is not employed. Fig. 6(b) indicates that in the

absence of any subgrid scalar flux closure, the magni-

tude of Amax exceeds unity and remains higher than DNS

values throughout the simulation. Similar behavior is

observed when SFM2 model is used. However, with

SFM5 and SFM6 closures LES predicts the evolution of

Amax with good accuracy.

Fig. 7 shows the PDF of A, the 3D spectral density

function of AðEAðkÞÞ, and the PDF of s1A for HI flow at

different times. Consistent with the results in Fig. 6, LES

with SFM5 and SFM6 predict all these quantities with
Fig. 5. Temporal variations of the variance of the resolved field

scalar A in different flows: (a) HI and (b) HS.

Fig. 6. Temporal variations of (a) the dissipation rate and (b)

the maximum concentration, of the resolved field scalar A in

HS flow.
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good accuracy. However, without SGS scalar flux

model, LES generated results are significantly different

than those of DNS; again indicating the importance of

subgrid scalar fluctuations. The results for HS and TSL

exhibit trends similar to those shown in Fig. 7 for HI

flow.

5.2. Reacting flows

In reacting flows, the filtered scalar field is affected by

the SGS stress, scalar flux, and unmixedness closures.

We have shown that with new serial decomposition

models, the SGS stresses and the scalar fluxes and the

filtered scalar field are well predicted by LES. Here, we

discuss a posteriori performance of the SGS unmixed-

ness in reacting flows.

Fig. 8(a) compares the decay of mean reactant, hAi as

obtained by LES and several different SGS unmixedness

closures with that of DNS for different reaction rates in

HI flow. Without any unmixedness model, LES under-

predicts hAi, more so at higher reaction rates. This is

understandable since kAB has negative effects on the fil-

tered reaction rate (Fig. 3); so if neglected the reaction

will appear stronger. The results obtained with UNM2

(or UNM1) do not exhibit any improvement over those

with no model. However, LES is able to accurately

predict DNS results when UNM5 and UNM6 are em-

ployed. This suggests that the serial decomposition clo-

sures correctly represent the SGS scalar correlations

throughout the simulation. Direct support for this

statement is provided in Fig. 8(b), where the PDFs of

kAB as obtained from DNS data are compared with those

of LES/UNM6 at different times. It is evident that the

DNS and modeled PDFs are very close at all times in

this flow.

Figs. 9 and 10 show the temporal variation of hAi,
hABi and the PDFs of the product mass fraction, P in a

Fig. 7. The statistics of the scalar field in HI flow, (a) the PDFs

of the resolved scalar A, (b) the 3D spectral density of the re-

solved scalar, (c) the PDFs of SGS scalar flux.

Fig. 8. (a) Temporal variations of the volumetric-averaged

values of the resolved field scalar A in HI flow, (b) the PDFs of

the SGS unmixedness in HI flow and for Da ¼ 4.
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reacting HS flow. Again, due to importance of subgrid

scalar correlations, LES with no unmixedness model (or

with UNM2) is unable to correctly predict the decay of

hAi (Fig. 9(a)). The ‘‘resolvable’’ part of the filtered re-

action rate (i.e. AB) is also incorrectly calculated when

no SGS model (or UNM2) is used (Fig. 9(b)). However,

the predictions improve substantially with incorporation

of the serial decomposition models (UNM5 or UNM6).

With accurate evaluation of kAB and AB, the filtered re-

action rate, the reactant conversion rate, and the prod-

uct formation are correctly predicted by LES at all

times. This is demonstrated in Fig. 10, where it is shown

that the PDFs of P as obtained by LES with UNM6 are

very close to those of DNS at all times.

Turbulent mixing layers are often characterized by

unsteady large-scale coherent structures [27]. These

structures have significant influence on mixing and re-

action, and are affected by small (or SGS) scalar corre-

lations. Fig. 11 shows the temporal variation of the

product thickness (or the total product mass fraction) as

obtained by LES and DNS in TSL1 and TSL2 flows.

Consistent with HI and HS flow results, the product

thickness is significantly overpredicted by LES when no

SGS unmixedness model is used (or when UNM2 is

used). However, with the serial decomposition closures

(UNM5 or UNM6) LES generates results that are

comparable to DNS in both TSL1 and TSL2 flows.

Fig. 9. Temporal variations of different statistics of the resolved

field scalars in HS flow for Da ¼ 4: (a) hAi and (b) hABi.

Fig. 10. The PDFs of the resolved field product mass fraction

in HS flow and for Da ¼ 4.

Fig. 11. Temporal variations of the total product mass fraction

or product thickness in mixing layer flows and for Da ¼ 1: (a)

TSL1 and (b) TSL2.
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6. Summary and conclusions

LES of scalar (temperature or species concentration)

transport in a turbulent flow requires proper closures for

the SGS stresses, the SGS scalar fluxes (siA), and in case

of reacting flow the SGS unmixedness (kAB). In this

paper, we discuss the physical behavior and the model-

ing of siA and kAB. Four different type of closures are

developed/tested: (1) gradient, (2) similarity, (3) mixed

similarity-gradient, and (4) serial decomposition clo-

sures. All models are assessed (a priori and a posteriori)

via analysis of the data gathered from DNS and LES of

HI, HS, and temporally developing mixing layer (TSL)

flows under nonreacting and nonpremixed reacting flow

conditions.

The gradient scalar flux model is developed based on

the assumption that the production and the destruction

of siA are in balance. The similarity and the serial de-

composition models are derived based on the observa-

tion that the Leonard (LiA), the cross (CiA) and the

Reynolds (RiA) parts of siA each contribute significantly

to the total values of siA. Among the tested closures, the

serial decomposition models are the most accurate. A

priori analysis indicate that both the grid- and test-level

SGS scalar fluxes are accurately predicted by these

models in all flows and all times. Our a priori results also

indicate that the serial decomposition models are the

most accurate SGS unmixedness closures regardless of

the speed of reaction. Furthermore, we have found that

the proposed serial decomposition models are less sen-

sitive to the variations in filter size and/or the approxi-

mation in the filtering operation in comparison with

other closures.

For a posteriori assessment of the models, LES of

HI, HS and TSL flows are conducted in which the

models are utilized on localized basis with no averag-

ing over homogeneous directions. In all nonreacting

flows, the statistics of the filtered and residual scalar

field are accurately predicted by LES when serial de-

composition closures are employed. The predictions are

much less accurate with gradient or mixed closures. In

all reacting flows, the statistics of the resolved scalar

field are also correctly represented by LES when serial

decomposition unmixedness closures are employed.

However, the mean values of the reactants are signifi-

cantly underpredicted by LES without unmixedness

model; indicating the importance of subgrid scalar cor-

relations.

Despite their demonstrated capabilities, the new se-

rial decomposition/similarity models have some limita-

tions in reacting flows. These models (and all the other

closures considered in this paper) are developed based

on the information residing at large scale or resolved

field. In some reacting flows, the small scales have sig-

nificant dynamic effects on the large-scale variables. For

these flows, the models which directly account for the

SGS effects (e.g. the FDF model [15,13]) are potentially

more accurate.
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